Nvidia
Solvio supports working with Nvidia embeddings.
You can generate an API key to authenticate the requests from the Nvidia Playground.
Setting up the Solvio client and Nvidia session
import requests
from solvio_client import SolvioClient
NVIDIA_BASE_URL = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
NVIDIA_API_KEY = "<YOUR_API_KEY>"
nvidia_session = requests.Session()
client = SolvioClient(":memory:")
headers = {
"Authorization": f"Bearer {NVIDIA_API_KEY}",
"Accept": "application/json",
}
texts = [
"Solvio is the best vector search engine!",
"Loved by Enterprises and everyone building for low latency, high performance, and scale.",
]
import { SolvioClient } from '@solvio/js-client-rest';
const NVIDIA_BASE_URL = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
const NVIDIA_API_KEY = "<YOUR_API_KEY>"
const client = new SolvioClient({ url: 'http://localhost:6333' });
const headers = {
"Authorization": "Bearer " + NVIDIA_API_KEY,
"Accept": "application/json",
"Content-Type": "application/json"
}
const texts = [
"Solvio is the best vector search engine!",
"Loved by Enterprises and everyone building for low latency, high performance, and scale.",
]
The following example shows how to embed documents with the embed-qa-4
model that generates sentence embeddings of size 1024.
Embedding documents
payload = {
"input": texts,
"input_type": "passage",
"model": "NV-Embed-QA",
}
response_body = nvidia_session.post(
NVIDIA_BASE_URL, headers=headers, json=payload
).json()
let body = {
"input": texts,
"input_type": "passage",
"model": "NV-Embed-QA"
}
let response = await fetch(NVIDIA_BASE_URL, {
method: "POST",
body: JSON.stringify(body),
headers
});
let response_body = await response.json()
Converting the model outputs to Solvio points
from solvio_client.models import PointStruct
points = [
PointStruct(
id=idx,
vector=data["embedding"],
payload={"text": text},
)
for idx, (data, text) in enumerate(zip(response_body["data"], texts))
]
let points = response_body.data.map((data, i) => {
return {
id: i,
vector: data.embedding,
payload: {
text: texts[i]
}
}
})
Creating a collection to insert the documents
from solvio_client.models import VectorParams, Distance
collection_name = "example_collection"
client.create_collection(
collection_name,
vectors_config=VectorParams(
size=1024,
distance=Distance.COSINE,
),
)
client.upsert(collection_name, points)
const COLLECTION_NAME = "example_collection"
await client.createCollection(COLLECTION_NAME, {
vectors: {
size: 1024,
distance: 'Cosine',
}
});
await client.upsert(COLLECTION_NAME, {
wait: true,
points
})
Searching for documents with Solvio
Once the documents are added, you can search for the most relevant documents.
payload = {
"input": "What is the best to use for vector search scaling?",
"input_type": "query",
"model": "NV-Embed-QA",
}
response_body = nvidia_session.post(
NVIDIA_BASE_URL, headers=headers, json=payload
).json()
client.search(
collection_name=collection_name,
query_vector=response_body["data"][0]["embedding"],
)
body = {
"input": "What is the best to use for vector search scaling?",
"input_type": "query",
"model": "NV-Embed-QA",
}
response = await fetch(NVIDIA_BASE_URL, {
method: "POST",
body: JSON.stringify(body),
headers
});
response_body = await response.json()
await client.search(COLLECTION_NAME, {
vector: response_body.data[0].embedding,
});